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Abstract .  We consider the retrieval properties of attractor neural networks whose 
synaptic matrica, have been constructed to maximise the number of patterns which 
can be stored in a pereeptron satisfying certain constraints. Retrieval is studied in 
the absence M well in the presence of faat noise (temperature). The discussion 
is restricted to dilute networks, for which dynamical equations for the overlaps are 

When the patterns are stored with a presmibed lower limit on the stability pa- 
rameter on every site, the full stability of the perceptmn ensure the existence of an 
attractor with perfect retrieval. It is found that the curve of critical storage capacity 
(a) against temperature (T) is a line of firatorder transitions for high values of a and 
becomes second order for low a, at a point of a tricritical nature. The phase diagram 
is compared with the dilute Hopfield model. It is found that a t  high synaptic noise 
levels the diluted Hopfield net stores more effectively than the network trained for 
optimal perceptron storage. 

When a given fraction of sites is allowed to violate the itability bound, the solution 
of the perceptron 'learning' problem does not ensure the existence of an attractor of 
finite overlap even in the absence of noise. This c u e  is studied separately for T = 0 
and for finite T. For T = 0 it is shown that despite the fact that errom increase dra- 
matically the capacity a t  the perceptron level, there are no attractors above a = 2. 
For finite T we compute phaae diagram for several situations, emphtuising the sen- 
sitivity to the level of errors. It WM found that learning with errors gives a t  best 
a marginal improvement of the retrieval storage capacity in a certain temperature 
range, but storage drops dramatically M the temperature is lowered. This lea& to a 
re-evaluation of the Gardner-Derrida network optimisation in the presence of errom. 

availabie. 

1. Introduction 

One of the main attractions of attractor neural networks is the impressive robustness 
of their performance to noise. The performance is associative recall, i.e. the fact that 
the state of the network drifts to the neighbourhood of one of a set of stored patterns 
(the one associated with the stimulus) and remains there for a long time. In the 
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biological context this expresses itself in the appearance of bursts of spikes in a well 
defined subset of the neurons in the network. 

The noise can have different origins. It can be ‘fast’, rendering the dynamical 
behaviour of every neuron indeterminate on the basic neuronal time scale (see e.g. 
[l-4]), or it can be ‘slow’, representing fixed randomness in the synaptic structure (see 
e.g. [5-7]). For both types of noise the performance of the Hopfield synaptic structure, 
has been shown to be extremely robust (see e.g. [3,4,7-91). 

1.1. Optimal storage and robustness 

Gardner [lo] opened the way for studying networks with synaptic matrices which are 
not explicitly prescribed, but which instead optimise the storage capacity for sets of 
random patterns. In this approach one arrives at  a collection of synaptic matrices all 
satisfying the condition that all patterns are stored with a stability parameter greater 
than some pre-assigned value, for as many patterns as such matrices exist. 

The Gardner approach gives on the one hand an evaluation of the storage capacity, 
i.e. the highest number of random patterns for which a non-vanishing set of interactions 
exists. On the other hand, it provides a probability distribution of the local fields, when 
the network is in a stored pattern, for a generic matrix in the volume of interactions 
satisfying the storage constraints [ I l ,  121. This distribution of fields provides the 
dynamical effect following one time step [ll] upon any initid input state, but bold 
steps have to be taken in order to go beyond [13]. 

Clearly, a matrix which stores the patterns perfectly, satisfying the stability re- 
quirement (equation (8), below), will have the patterns as fixed points of t,he dynamics 
in the absence of noise. But will it retrieve at  finite noise levels? How will the storage 
capacity of the network and its retrieval quality vary with the noise level? The first 
question is concerned with the maximal number of patterns which are stored perfectly 
at  zero temperature and whose generic matrix produces a non-zero fixed point value 
for the overlap with single patterns at finite temperature. The second question is 
concerned with the magnitude of the overlap at  the critical storage level. What one 
is after is the equivalent of the phase diagram in the T-CY plane. These questions are 
important for the estimation of the robustness of an optimally storing matrix. Yet 
they have found no technical solution for fully connected networks to date. The reason 
is that on the one hand the matrices are not symmetric, precluding the application 
of equilibrium statistical mechanics. On the other, dynamical equations become very 
complicated beyond the first step [14], although recently progress has  been made on 
the dynamics of fully connected networks [13,15]. 

1.2. Overlap dynamics without errors 

A way toward a qualitative understanding of the overlap dynamics and attractor struc- 
ture is the study of the dilute network, for which one has equations of motion for the 
overlaps [8]. It has been used on several occasions to study the behaviour of networks 
with intrinsically asymmetric couplings. In some cases the dilution was superposed 
on an explicit synaptic prescription. See e.g. [16,17]. But, as was recently shown 
in a posthumously published paper of Gardner [18], optimal storage matrices can be 
studied for the dilute system with the same effectiveness as for the fully connected 
one. Using the ensuing distribution of fields and the existence of dynamical equations 
for the overlap, m, Gardner has studied the structure of the basins of attraction in 
a noiseless, optimally connected network near saturation. It was found that if the 
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storage fraction a = p/C < 0.42, where p is the number of stored patterns and C is 
the number of connections per neuron, the basin of attraction of the retrieval state, 
is unity. Above this value of a the m = 0 fixed point becomes an attractor at the 
expense of the basin of retrieval. 

In this paper we extend this study to include fast noise (temperature). The dy- 
namics of a neuron is stochastic; its new state is determined according to a probability 
which depends on the local field generated by the previous network state and on the 
temperature. Following the formulation in section 2, we compute, in section 3 the 
phase diagram in the a-T plane, at maximal storage, i.e. when the volume in in- 
teraction space shrinks to zero. It is found that the line separating retrieval from 
non-retrieval is a line of continuous transitions, with the retrieval overlap (m) vanish- 
ing continuously for a < 0.26. Above this value of a the transition is discontinuous. 
The value a = 0.26 is determined by an analytic condition on the distribution of the 
local stability parameter. This point is the analogue of a ‘tricritical’ point. The noisy 
performance of the optimal network is compared with the performance of networks 
with dilute Hopfield coupling matrices [8]. It is found that for high noise levels the 
dilute Hopfield network has retrieval attractors at higher storage levels than the net- 
work of optimal storage at T = 0. Section 4 presents some analytical results in the 
vicinity of the continuous line and near the ‘tricritical’ point. 

1.3. Storage with errors and overlap dynamics 

The optimal storage computation of Gardner was extended to allow for a fixed frac- 
tional number of violations of the stabilty constraints [19]. This is done by defining a 
cost function to be the number of violations of the stability constraint (irrespective of 
the magnitude of the violation) and optimising the cost in the space of interactions. 
The behaviour of the noiseless perceptron under this relaxed set of constraints was 
investigated in detail. However, in this case the existence of an appropriate matrix of 
weights does not guarantee the existence of a finite overlap attractor even at T = 0. 
And then there is the whole question of the structure of the attractors in the presence 
of noise. 

In section 5 we use the Abbott-Kepler results for the universality in the space of 
optimal interactions [20] to obtain the field probability distribution in a pattern for a 
network w h m  couplings are optimised with the Gardner-Derrida constraints. This 
distribution function has a rather peculiar nature. In fact, the distribution of the 
fields in the optimal Gardner-Demda network develops, in addition to a distribution 
starting at the imposed stability parameter K ,  a Gaussian tail at  the extreme negative 
values of the stability parameter, wherever constraint violations exist (see e.g. figure 1). 
This implies that the network enlarges the number of patterns it can store, at a fixed 
error fraction, by making the errors in the field, i.e. the violation of the constraints 
wherever they are violated, larger and larger. 

The consequences of this field distribution for the attractor structure is analysed 
in section 5, for the noiseless and for the noisy case. it is found that in some param- 
eter regions the sensitivity to the number of allowed errors is rather extreme. Phase 
diagrams for several values of the error fraction are presented and discussed, in p+ 
rametet regions in which replica symmetry (in weight space) is stable. In particular, it 
is shown that, despite the fact that in the single layer perceptron the storage capacity 
increases dramatically above ap = 2 with the allowed fraction of errors, there are no 
attractors for Q > 2. In what follows we shall denote the perceptron storage capacity 
by ap and the storage capacity for attractors by a,. 
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Figure 1. 
optimised with error fraction [19] f = 0.15 and I( = 0.1. 

The probability distribution of the itability parameter in a network 

2. Formulation 

We denote the state of the network at  time t by {S i ( t )  = fl},  with i = l , . .  . , N 
listing the neurons. The dynamics of a neuron in the presence of fast noise is given 
by the probability that the node i will take on the state Si at time t + 1, e.g. 

(1) 
1 

Pr[Si(t -t = 1 + exp[-2phi(t)Si(t + l)] 

when it sees a local field hi due to the activity in the network at time t .  The field 
at node i is determined by the states of the neurons connected to it via the synaptic 
matrix, which will be denoted by J i j / f l ,  namely 

(2) 

and Jij is normalised by: 

C J i = C  
j=1 

N 

where C is the mean connectivity per neuron. In (1) th 
is denoted by T = 8-l. 

magnitud of th 

(3) 

fast noise 

When storing p N-bit patterns {Er = f l }  with p = 1 , .  . . , p  in the network, one 
monitors the degree of associative recall of a single pattern v by the overlap 

. N  
1 n ( t )  = - C < ; S i ( t ) *  

i = l  N (4) 

When the network settles in an attractor, associative recall of pattern v is signalled 
by the fact that the temporal average of the overlap 
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is large, of order unity. Overlaps with all other patterns will fluctuate around zero. 
The angular brackets denote a temporal average over the states of the individual 
neurons. 

For the network to retrieve associatively a set of patterns, information about the 
patterns has to be encoded in the synaptic matrix Jij. One form of encoding, which 
has been found to be extremely robust, is Hopfield’s synaptic structure, i.e. in the 
notation of (2) 

see, e.g. references [3,4,7-91). 
On the other hand, in Gardner’s approach the synaptic matrices are not explicitly 

prescribed. Instead, one considers generic matrices for which a stability requirement 
is satisfied for every pattern at every node. The stability parameter at a site, when 
the network is in a pattern is, to recapitulate, 

The stability requirement, which is the constraint defining the volume in interac- 
tion space, reads 

A ; > K  f o r p = l , . , .  , p ;  i = l ,  . . . ,  N .  (8) 

This approach provides a probability distribution p,(A) when the network is in a 
stored pattern, for a generic matrix in the volume of interactions satisfying (8). In 
other words, one can compute 

p,(A) = &(A” - A) (9) 

where the bar indicates an average over the volume of storing matrices as well as 
over the distribution of patterns stored and the subscript K: refers to the particular 
stability constraint (equation (8)). Note that since the connectivity is considered 
optimal in the absence of synaptic noise, the K determines CY and will be used below as 
the independent variable. The distribution of stability parameters provides, in turn, 
dynamical equations for the overlap of the dilute network [ l l ,  121, in terms of the of 
the signal and Gaussian noise in the local field [5,8]. It reads, 

where p is the probability distribution of the stability parameters and Dy is the Gaus- 
sian measure 

Equation (10) describes the parallel (synchronous) dynamics of a dilute network. 
Here we shall not consider the dynamical features implied by this equation but only 
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the structure of its fixed points. The fixed points are, of wurse, the same as those of 
asynchronous dynamics, which is more realistic and more robust. 

For a fixed value of the stability bound IC, maximal storage is attained when the 
volume of the interactions satisfying the stability constraint shrinks to a point, which 
is indicated by 

The indices a and b refer to different replicas. Storage capacity, in the above sense, 
op, depends on IC via [lo] 

a;’ = [L Dt(n - t ) 2 .  

The field distribution function at maximal storage is given [11,12] as 

where IC is defined in (8). 

3. Noisy dynamics of errorless optimal network 

The fixed points of (10) have been studied numerically and the results are summarised 
in figures 2 and 3. In figure 2(a) we present the phase diagram, the composite line 
separating the regions in the a--T plane of retrieval (under the curve) from non- 
retrival (above), as well as regions of ‘wide retrieval’ and ‘narrow retrieval’ (- below 
for explanation of these terms), to the left and to the right of the dotted curve, 
respectively. Recall that a is determined by the q = 1 optimisation condition, as a 
function of the stability parametet K. The lines are actually lines of Tc(~), which is 
why IC is given on the top horizontal axis. Non-retrieval is characterised by the a k n c e  
of a fixed point with non-zero overlap m. For lm a and high T (broken curve) the 
transition is continuous. At a % 0.20, it turns into a discontinuous transition (full 
curve), at  a ‘tricritical’ point. 

The dotted curve is the analytic continuation of the continuous transition. It 
reaches a = 0.42 at T = 0. In section 4 we shall see that this line, together with 
the line of continuous transitions, separates the regions in which the m = 0 fixed 
point is stable (on the right) and unstable (on the left). Thus, in the upper right 
region, m = 6 is the only fixed point, whereas in the lower right region, attractom 
corresponding to retrieval and to no retrievd coexist. But, kcme sf the presence 
of the m = 6 attractst, the basin of the retrieval attractor is narrowed, Therefore, 
the dotted curve is also the transition line from ‘narrow’ b ’wide’ retrieval, namely to 
its left the basin of attraction of the attraaot is the entire interval (0-11, while ts itde 
right, only part of this interval consti tub the basin of attraction and m = 9 retains a 



EE 



3368 D J Amit, M R Evans, H Homer and h‘ Y M Wong 

Concerning the behavioural difference between the Gardner and Hopfield networks, 
we draw attention to a recent study on training noises [21,22]. At T = 0, the Hopfield 
network maximises, over the entire interaction space, the output overlap for very noisy 
input overlap, while the Gardner prescription maximises the output overlap for a clean 
input. The ability of the Hopfield network to process noisy inputs accounts for its 
larger basins of attraction, and consequently its stronger propensity to ‘wide’ retrieval. 
It also accounts for the better associative performance of the Hopfield network in a 
noisy environment such as high temperature. In fact, the Hopfield network has the 
best storage capacity of attractors at sufficiently high temperatures [23]. 

In figure 2( b )  we plot the transition temperature against the stability parameter 
IC. One observes that for sufficiently high K ,  beyond the tricritical point, the transition 
temperature T, = IC (see, e.g. section 4). In the physical analogue of the single node 
dynamics (equation(l)), one identifies n as the ‘energy gap’, and hence a thermal 
agitation of magnitude T - n is required to cause a significant fraction of the Ising 
spins to flip against their local fields and become errors. This implies T, - IC. 

1, 

m 
0 

T 
3 

Figure 3. Retrieval quality m against noise T for several values of I( (and hence of 
ac(rc)), marked in the figun. 

In figure 3 we show the retrieval quality m against T for several values of a,(n), i.e. 
several values of n. For high IC (low cr,(n)), m vanishes continuously at the transition. 
Hence the horizontal intercepts of the retrieval quality curves correspond to points on 
the phase line separating wide retrieval from no retrieval . This transition is continuous 
up to the tricritical storage atr = 0.26 (ntr = 1.7,Ttr = l . l ) ,  

For lower K ,  m vanishes discontinuously, and the broken curve shows m at the 
discontinuous transition. The touching points of the retrieval quality curves with the 
broken curve correspond to points on the phase line separating narrow retrieval from 
no retrieval. 

It should be noted that while for low a, (high n) m vanishes continuously at  the 
transition, wherever both networks retrieve the high n network gives better retrieval 
quality. 
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4. Analysis of the order parameter map 

The order parameter map given by (10) is quite general and can be studied without 
specifying either the form or the parametrisation of p(A). We first proceed, therefore, 
to analyse the fixed point structure of the map without specifying p ( A ) .  In particular, 
one can obtain conditions on p ( A )  for various types of transitions from retrieval to no 
retrieval, which would, in turn, yield critical values of the parameters of the model. 
All these questions go back to the dependence of the fixed point structure of (10) and 
of the stability of these fixed points on the properties of p ( A )  and on the noise T. 

The fixed points, m*(lc,T), of (10) are given by the roots of g(m, K , P )  where 

s(m,  K ,  P )  = f ( m ,  K ,  P )  - m (15) 

(16) f (m,n ,P)  =Iw --m D y I w  -m dAp(A)tanh{P [,A+-,]} 

with T = l /P .  This function is odd so we can focus our discussion on m > 0. For 
an attractor, we require g’(m*) < 0 where g(m*) = 0, and for an unstable fixed point 
g’(m*) > 0. 

For the optimal neural network considered here there are three fixed point struc- 
tures: m = 0 is always a fixed point, due to the antisymmetry of g(m). It may be the 
only fixed point or there may be either one or two additional fixed points with m > 0. 

1. When m = 0 is the only fixed point it must be stable (figure 4, curve (1)). This is 
the situation of no retrieval. This is the case, for example, in Gardner’s model a t  
very high loading, i.e. CY > 2 [18]. 

2. When there is only one additional positive fixed point it must be stable and m = 0 
must be unstable (figure 4, curve (2)). This is, for example, the case at  low loading 
(0 < CY < 0.42) in Gardner [18]. 

3. Finally, when there are two additional positive fixed points, as for intermediate 
loading (0.42 < CY < 2) in Gardner [18], m = 0 and the m with the high absolute 
value are stable, while the fixed point in the middle is unstable (figure 4, curve 
(3)). The intermediate fixed point delimits the basin of attraction of the high-m 
(retrieval) fixed point. 

One may conceive of neural networks with more complex fixed point structures 
[23]. Those will not be considered here. 

As the structure of g changes with the noise level, at  fixed learning parameters (e.g. 
K or CY), the fixed point structure may change between any two of the three alternatives. 
For purposes of associative retrieval, we are primarily interested in changes between 
retrieval dynamics and no retrieval, i.e. (2) + (1) or (3) 4 (1). The first transition is 
continuous, in the sense that the finite m fixed point disappears as m -+ 0 continuously. 
The second transition is discontinuous, as the two finite m fixed points coalesce and 
disappear a t  finite m. In addition there is a transition (2) -+ (3), through which the 
retrieval attractor survives, but its basin of attraction, which is unity in (2),  is reduced 
in (3). 

4.1. The continuous transition and the ‘tricritical‘ point 

A necessary condition for a continuous transition from retrieval to no retrieval is the 
appearance of the m = 0 attractor. This requires, 

g’(0) = 0 (17) 
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Figure 4. ( a )  Schematic sketch of the three possible fixed point structures in g: (1)  
no retrieval, (2)  wide retrieval, (3) narmw retrieval. ( b )  Schematic representation of 
different retrieval regions in the phase diagram. 

which, using (16), reads: 

1 
(A) = p s-", Dy sech2(@y) 

where the angular brackets denote an average over the distribution p ( A ) ,  i.e. 

But this condition is not sufficient since the retrieval attractor may still remain stable. 
Thus,  g' = 0 may also indicate a transition (2) + (3) .  We come back to this issue 
below. 

The  additional condition for a continuous transition is: 

gll(m = 0) < 0 (20) 

to  ensure a stable fixed point a t  arbitrarily small m as T is raised to  the transition 
value. Whereas for 

g"'(m = 0) > 0 (21) 

m = 0 is a stable fixed point and the retrieval fixed point disappears discontinuously, 
when the two roots a t  finite positive m coalesce and disappear. The two cases are 
separated by the point a t  which 

g y m  = 0) = 0 (22) 

when all five (positive and negative) roots of g(m) coalesce a t  m = 0. The  special point 
is determined by the two simultaneous equations (18) and (22). It is the analogue of 
a thermodynamic tricritical point. When (16) is substituted in (22), one has 

3(A) - (A3) = 0. (23) 
Note that  this condition is temperature independent, which implies that  it must reflect 
itself also in the T = 0 dynamics (see below). 
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4.2.  Transitions near the ‘tricritical’ point 

The line of discontinuous transitions is defined by the appearance of a double zero of 
g a t  non-zero m, i.e. when the maximum in figure 4, curve (3) crosses g = 0. Thus,  
in addition t o  the equation g(m) = 0 we must satisfy g’(m) = 0, both a t  m # 0. 
These are two equations for the three unknowns m, P and K ,  whose solution is the 
equation for the line of discontinuous transitions, P c ( ~ ) ,  and for the discontinuity in 
the retrieval amplitude Am(.). 

To investigate the neighbourhood of the ‘tricritical’ point, where m is small on 
both the continuous and the discontinuous sides, we expand (16) for small m, up to 
fifth order. Analysing, in the appendix, the expanded map we find that the retrieval 
amplitude m grows as m, as one goes below the line of continuous transitionst. 
The line given by (18) can be evaluated beyond the ‘tricritical’ point and all the way 
to  T = 0. Yet when g”‘(0) > 0, as one lowers T or raises P from the state of no 
retrieval, two non-zero roots appear before (at higher temperature) g’(0) vanishes. In 
the language of the corresponding thermodynamic analogue: the first-order transition 
takes place when the zero field susceptibility is still positive. Thus,  two lines start  a t  
the ‘tricritical’ point. They are the full and the dotted curves in figure 2, for example. 
The first is the line of discontinuous transitions and the second is the continuation t o  
T = 0 of the line of instability a t  m = 0. Near the ‘tricritical’ point the two lines 
can be computed and compared, see the appendix. The result is that  the two lines 
start  with equal slopes and diverge a t  second order. This implies, inter alia, that  the 
line of discontinuous transitions has the same slope as the actual line of 
transitions. 

Returning t o  the Gardner case, using p, (A)  of [11,18], we find the 
transition line from (18) as 

continuous 

continuous 

(24) 

from which one can construct the dotted curve in figure 2. Moreover, expanding the 
left-hand side of (24) for large K and the right-hand side for small P ,  one finds the 
relation T, = K .  Since the correction to  the left-hand side is exponentially small and 
to  the right-hand side it is of relative magnitude P 2 ,  the relation holds over a wide 
region (see e.g. figure 2(b)). 

The condition given by (23) for the tricritical point becomes 

Equations (24) and (25) can be solved numerically to  give the tricritical point as 
K~~ = 1.700, Ptr = 0.909 which corresponds to  atr = 0.258, T,, = 1.100 in the phase 
diagram, figure 2. 

4.3. The transition from wide to narrow retrieval 

The dotted curve in figure 2 was described above as the continuation of the line of 
continuous transitions. Its dynamical significance is that in the region of retrieval it 
separates two sub-regions: t o  its left there is ‘wide retrieval’, marked (2) in figure 4( a), 

t At  the tricritical value of a the growth of m is like AT1I4. 
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and to its right is a region of ‘narrow retrieval’, marked (3). At T = 0, ‘wide retrieval’ 
is delimited by 0 < a < 0.42 [18] and for 0.42 < a < 2 retrieval is narrow [18]. As T is 
raised, the region of ‘wide retrieval’ shrinks until at  the temperature of the tricritical 
point it is limited to  0 < a < 0.258. 

The identification of the three regions in figure 4(b) with the three types of map 
dynamics is justified by the fact that on crossing the full curve the form of g must 
change from that of figure 4( a )  curves (1)  to  (3), as was explained in the discussion of 
the continuous transition. Similarly, upon crossing the broken curve, g must change 
from the form figure 4(a) curve (1) to (2), as is implied by the continuous transition. 
The changes in the form of g as implied by the transition type coincide with the 
classification of the retrieval dynamics into no retrieval, ‘wide retrieval’ and ‘narrow 
retrieval’. It remains to  be shown that the subdivision of the retrieval region is made 
by the dotted curve, i.e. the line g‘(0) = 0, together with g”’(0) > 0. 

To see this recall that below the dotted curve is a region in which g’”(0) > 0, since 
a > at,(= 0.258). Thus above (and near) this curve g’(0)  < 0 and the form of g is that 
of (3), with the middle (unstable) fixed point approaching m = 0, as one approaches 
the line g’(0) = 0. Upon crossing this line g‘(0)  becomes positive, leading to the form 
(2). The basin of attraction reaches the full interval (0-1) continuously as the dotted 
curve is approached. 

It is interesting to  observe that part of the region which at T = 0 gave wide 
retrieval, i.e. 0.258 < a < 0.42, gives narrow retrieval as T is raised. The precursor 
of this change can be detected already in the form of g at T = 0. Note that along 
the T = 0 axis, as a is increased there is a changeover, at  0.258, from a shape 
qualitatively like (2) to  (3), although there is still only one finite fixed point. Yet, for 
low a,  g”’(T = 0 ,m  = 0) < 0, and since g’(0) > 0, the function g ( m )  is convex, for 
small m. But, g”’ changes its sign at  the value of a (or K )  which corresponds to  the 
‘tricritical’ point. This condition, (23), is independent of T.  As one crosses this point, 
g at T = 0, becomes concave in the neighbourhood of m = 0,  and eventually as a 
crosses the value at which 

(A) = m (26) 

where g’(T = 0,m = 0) vanishes, g takes on the form (3). To summarise, for (A) > m, as the temperature is raised, the transition to  no retrieval will be continuous 
or discontinuous depending on whether g(m, T = 0 )  is concave or convex, respectively, 
in the neighbourhood of m = 0. 

5. Dilute networks with minimised error number 

Having investigated the behaviour of a network which optimally stores random pat- 
terns without errors in the presence of fast noise, it is natural to proceed to  investigate 
networks in which random patterns are stored with a given fraction, f, of the stabil- 
ity constraints, (8), violated. One way of describing such networks was put forth by 
Gardner and Derrida [19]. In this approach one searches for the normalised coupling 
matrices which minimise the cost function 

P 
C = z€3(tc - A”) 

p = l  
(27) 
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for a given set of random patterns, where A” is given by (7).  The actual computation 
of the volume in interaction space proceeds by first observing that  it can be fully 
mapped on the original Gardner [lo] volume computation, if the stability constraints 
are modified according to: 

@(Ap - I C )  -* G(Ap - K )  = exp[-he(n: - A”)] (28) 

and then taking the limit h --* 00, to  project the matrices of minimal error. This 
limiting procedure is slightly subtle [19], as it must follow the rate a t  which q + 1, 
namely 

When the optimal storage allows for violations of the stabilit,y condition a t  some 
sites, the question of the existence of attractors becomes non-trivial, even in the ab- 
sence of noise (T = 0). This is particularly true because of the special way in which 
the local fields are distributed in the Gardner-Derrida scheme. It might have been 
the case that  all the violations of the stability condition produce sites at which, while 
AF < IC still AF > 0. Such a situation would have left the state with m = 1 a fixed- 
point attractor a t  T = 0. But as we shall see below the distribution has the form 
displayed in figure 1 and hence any site which violates the stability condition actually 
produces an error in the first dynamical step. Errors can converge or proliferate on 
subsequent steps, even a t  T = 0. 

The dynamics of the dilute network is described again by (10). In particular, for 
T = 0 this equation reduces to  

W 

m(t + 1) = J_, dAp,(A)erf [m(t)A/\] . (30) 

For both zero and finite temperature we need the distribution function pic. 
To obtain this distribution function we resort to  the general results of Abbott and 

Kepler [20], who give p for any constraint function on the stability parameterst. Their 
central result is worth recapitulating: if on the right-hand side of (28) one writes 
G(A” - I C ) ,  to  replace the no error constraint, then the function 

determines both a p  and p. One has 

and 

t Recently Wong and Sherrington [22] have developed another general technique for the study of 
optimisation in interaction space. 
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Hence, given G(y),  the calculation reduces to  the evaluation of the integral 
00 

B(r )  = d z  G(z) exp[-(z - z)'/2( 1 - q) ]  (34) L 
in the limit q + 1. 

In the present context, with G(y) given by (28), this integral is 

for q 
are taken a t  a fixed value of z2, (29), one finds: 

1. When this expression is substituted in A ,  and the limits q -i 1 and h - ~3 

+ O(% - K: + z)O(n - t)b(y - K ) ]  (36) 

which, in turn,  substituted in (33), gives 

which is the field distribution function shown in figure 1. T h e  value of cyp and the 
fractional number of stability errors, f ,  are given as in [19], namely 

a;' = l:, Dz ( t  - K)' (38) 

and 

Note the sharp gap, K - 1: < A < K ,  in the field distribution. It is a result of the 
particular cost function employed. This interval may not be present or may fill up if 
the cost function becomes more sensitive to  the size of the errors, or if the training 
patterns contain errors [22]. Figure 1 indicates that ,  for a Gaussian distribution, the 
sites at which errors in the stability parameter occur violate the stability in a maximal 
way. In other words, the fields a t  those sites, when the network is in a pattern, are 
as large as possible and opposite in sign to  the pattern. The corresponding cost 
function (27) does not penalise for i t .  Clearly, an error contributes one to  the cost 
irrespective of the size of the constraint violation. The distribution will also become 
smoother if the storage were not pushed t o  its extreme., i.e. q < 1. 

The  dynamical equation corresponding, in a dilute network and parallel dynamics, 
to this field distribution is: 

m(t + 1) = [IQ5 + 17 DA [I Dy tanh [ p  (mA + m y ) ]  

Q5 + LQ5 Dy tanh [P (mc + m y > ]  [erf (5) + erf (y)] . 
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5.1.  Retrieval in networks with ermrs in  l eaming  

We now consider the implications for attractors of a network of the Gardner-Derrida 
type discussed in the previous section. The formula for a p ( n ,  f) of Gardner-Derrida 
shows a dramatic increase in the number of patterns that can be learnt at  each site if 
a fraction f of the patterns are learnt incorrectly. For example, for f = 0.1 and K: = 0, 
a p  5.7, if we extrapolate the replica symmetric resultst. An error at  a site implies 
that the imposed stability condition (8) is violated at  that site. From figure 1 we 
can see that for the Gardner-Derrida cost function the constraint violations (A < n) 
always give stability violations ( A  < 0), so that we are not guaranteed an attractor, 
even at T = 0, as would be the case if all 0 < A < K .  If the maximal number of 
patterns per neural connection stored in a perceptron with error fraction f is given 
by ap(n,  f), one would like to  know what would be the maximal a, a,(n, f, T), for 
which attractors still exist, for field distributions of the form figure 1. 

Figure 5 presents the results of solving the fixed point equations of (40). Each 
point in the a-n plane corresponds to  a value o f f  where a = a p ( n ,  f ) .  Several curves 
of constant f are drawn in the figure. The broken curves are lines of constant critical 
temperature. A point on such a line gives: 

1. The temperature at which the retrieval attractor of the map (40) is destabilised 
for the particular values of a and n. 

2.  The error fraction, f (n ,  a ) ,  corresponding to optimal perceptron storage. 

No distinction is made in the figure between continuous and discontinuous transi- 
tions to no retrieval. From figure 5 one can read off aC(n,T)  which is the value of a 
beyond which learning with errors, at fixed n, no longer gives attractors at temper- 
ature T .  Note that to each a,(n,T) corresponds a value of f ,  so once the critical a 
has been crossed there are no attractors because at  fixed K an increase in a leads to 
an increase of f .  To obtain a C ( n ,  T )  one draws a line parallel to  the a axis, at  the 
chosen value of K ,  to  find the intersection with the chosen temperature curve. One 
then projects down to the a axis to find a,. To obtain the error fraction corresponding 
to  a,, one interpolates between neighbouring curves of constant f. 

An alternative way of reading figure 5 is to  select a value o f f  and a temperature 
and to  find the minimum value of K that can support this error fraction and still give 
an attractor at  that temperature. This is done by finding the intersection between the 
relevant f and T curves. 

5.2. The  noiseless case 

For n = 0 the Gardner result, that the perceptron of connectivity C can store as many 
as 2C random patterns, implies that an ANN with connectivity c can have as many 
as 2C uncorrelated fixed point attractors at  zero temperature. It also implies that 
errors cannot possibly increase this number. If at T = 0 the attractors of [8] are fixed 
points, then every attractor is also a configuration stored by the perceptron. But the 
perceptron cannot store more than 2C uncorrelated patterns, and the dynamics of 
the dilute network does not generate correlations [8]. Hence, the possibility of the 
existence of attractors for a > 2 is ruled out,  even when the error fraction allows 

t The behaviour of a p  is reduced to a numerical example because the figures to be displayed below 
are restricted to a 5 2. Higher values of a are irrelevant for retrieval (see below). 
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Figure 5. Phases of retrieval attractors for perceptron training with errors. Full 
curves: perceptron storage capacities ap against training stability constraint K for 
several values of the error fraction f .  Broken curves: retrieval storage capacities a, 
ageinst n for several values of the synaptic noise parameter T .  The dotted curve 
delimits to its right the region in which replica symmetry breaks. ( b )  is an expansion 
of the large a small n comer of ( a ) ,  for very small error fractions. 

a p  > 2. However, for learning at  a fixed positive value of n there is no reason, 4 
priori, to exclude the existence of attractors for values of (Y with 2 > (Y > a P ( n ,  0). 

At zero temperature and K = 0 we see in figure 5 that CY, = 2 at f = 0 which 
agrees with our a priori argument. However, for n > 0,  aC(n1 T = 0) is always greater 
than a p ( n , f  = 0), i.e. the Gardner limit, showing that learning with errors at  fixed 
positive n increases the storage capacity for retrieval. In figure 5(  b )  the region of low n 
is highlighted to show that for small positive n, a, is always less than 2 and attractors 
exist only for extremely low values of f. For example, we can take f = 1.4 x 
and T = 0 to find that we must have K = 0.25 to have retrieval fixed points. This 
shows that for low K learning with errors will be detrimental to the possibility of 
attractors unless the error fraction is kept extremely small. This is in agreement with 
recent studies [21], which show that similar two-band distribut>ions for the fields lead 
to deterioration in retrieval performance. 

Finally, it is important to notice in figure 5 that in the region where replica sym- 
metry breaking occurs, there are no attractors present. The point CY = 2,  K = 0 is on 
the boundary. In the entire region where attractors exist replica symmetry is stable. 

5.3. The presence of noise 

We now consider the effect of finite temperature. At T = 0 we have argued that 
the maximum value of a, is fixed at  2 and this is given by the perceptron algorithm 
without errors. At finite T, a, will be reduced due to the disordering nature of noise. 
Robustness against temperature demands a sacrifice of capacity for stability. Indeed, 
figure 2 ( b )  shows that for f = 0 in a wide range of K ,  almost the entire range of the 
continuous transitions to no retrieval, T, 21 K .  Thus high temperature requires a high 
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K for retrieval. It is in this high K regime that learning with errors gives a significant 
increase in a over the Gardner case. For fixed a, learning errors allow a higher value 
of K with the sacrifice of stability at  a small fraction of sites. One might expect that 
at  finite T this trade-off will allow attractors to be retained a t  a values at  which there 
are no attractors in the absence of learning errors. In other words, one might expect 
that for a fixed finite temperature, the maximal a, will be reached by learning with 
errors. This possibility is studied below. 

Returning to figure 5 one observes, inspecting the lines of constant critical temper- 
ature, that as T increases they become more vertical. This implies that as T increases, 
a, becomes essentially independent of n, over a wide range of K .  Equivalently, learning 
with no errors gives approximately the same storage capacity as learning at  a higher 
value of K and allowing errors. For T = 1.0 the fixed temperature curve even bends 
back slightly on itself, which implies that the maximum a, for T = 1.0 is given by 
learning with errors. However, the maximal a, is found to be 0.279 at f = 0.037, 
whereas for no errors a, = 0.275. Thus the improvement in a, at finite temperature 
is only marginal. 

A more significant improvement is achieved by the dilute Hopfield ANN, for which 
at  T = 1.0 a, = 0.367. It is intriguing to note that at  this point the field distribution 
in the Hopfield network is a Gaussian of width 1 and mean a-lI2 = 1.65. This 
distribution has a very significant tail of negative fields. The reason for the better 
performance of the Hopfield network is that at  sufficiently high TI it is better to have 
more nodes with negative fields distributed around zero. In that case Lhe incorrect 
bits can be more readily flipped to their correct states by the noise. This implies that 
learning with errors should improve upon the performance of the errorless network, 
provided the cost function for the errors produces field distributions with negative 
tails near zero. One such possible cost function is the sum of the magnitudes of the 
errors, rather than their mere number, as used above [24]. 

In order to compare retrieval phase diagrams of networks trained as perceptrons 
with and without errors, we present in figure 6 a phase diagram for a network storing 
patterns with a fixed fraction of errors f = 0.023, superposed on the phase diagram 
figure 2 for which f = 0. The two diagrams are qualitatively similar. In figure 6 the 
continuous transition line for f = 0.023 (short chain curve) begins, for a = 0.0, at  
a lower T than the equivalent curve with f = 0. The curve with the errors crosses 
the errorless curve a t  a temperature that is higher than that of both tricritical points. 
The wide to narrow retrieval transition lines are the dotted and short broken curves 
for f = 0.023 and f = 0, respectively. 

The significant points to note are as follows. 

(i) In the case of finite, even very small, f the regime of narrow retrieval is drastically 
curtailed, which reflects the sensitivity of the attractors to errors at  low values of 
K .  This is clearly seen by comparing the discontinuous transition lines for f = 0 
(full curve) and f = 0.023 (long chain curve), e.g. for T = 0, a,  is reduced to 0.86 
for f = 0.023. 

(ii) The continuous transition lines remain very close, although the exact positions of 
the tricritical points may be well separated. This closeness of the lines of contin- 
uous transition implies that, at  high temperature, a, does not vary significantly 
with f ,  which is reflected in the vertical nature of the T = 1.0 curve in figure 5 ,  
as discussed above. 
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Figure 6. Phases of retrieval attractors for perceptmn training with errors f = 0.023 
and without errors. The conventions for f = 0 are as for figure 2. For f = 0.023 
the long chain curve is the line of discontinuous transitions to no retrieval; the short 
broken line is the transition from wide to narrow retrieval; the short chain curve is 
the line of continuous transition to no retrieval; the tricntical point is marked by a 
dotted circle. 

6. Conclusion 

We have investigated the effects of fast noise (temperature) on attractor neural net- 
works with optimal interactions which are diluted asymmetrically, and have found 
three types of behaviour. When both temperature and storage levels are high, the 
system is unable to  retrieve. When either or both of them are lowered, the network 
enters a retrieval phase, which in turn divides into two sub-regions. Roughly speaking, 
the major effect of slow noise (pattern interference) is t o  narrow the basin of attrac- 
tion. Hence, for high storage level and low temperature, we have a phase of narrow 
retrieval where the retrieval and non-retrieval attractors coexist, and transition to  
non-retrieval is discontinuous. On the other hand, fast noise (temperature) reduces 
retrieval in a way less dependent on the input overlap. As a result, we have a phase 
of wide retrieval for high temperature and low storage level. The  transition t o  no 
retrieval is continuous, as is the transition to  narrow retrieval. 

I t  is interesting to compare this system with other networks whose phase dia- 
grams are already known. Consider the fully connected Hopfield model [3-51. There, 
the transition between retrieval and no retrieval depends in a qualitatively similar way 
on temperature and storage. At T = 0 the phase line reaches a = 0.14 [4]. Since the 
transition is always discontinuous, there is no equivalent t o  the transition between nar- 
row and wide retrieval. However, even within the retrieval phase, there is a first-order 
transition when the global minimum of the free energy shifts between the retrieval 
state and the spin-glass state. At T = 0 this phase line reaches a = 0.05. It is natural 
t o  expect that  the basin of attraction of the retrieval state shrinks considerably when 
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it ceases to be the global minimum, which may be the analogue of narrowing retrieval, 
although this speculation has yet to be confirmed by further studies. It is also worth 
recalling that the phase of no retrieval, of the Hopfield model, is further separated 
into the spin-glass and paramagnetic (ergodic) phases [4]. In the present work we 
have not studied the analogues of these phases. In any case, here we have dealt with 
an asymmetric model, for which the analogue of the concept of a spin glass phase has 
yet to  be defined. 

The appropriate comparison is between models of the same connection topology, 
which is why we introduce the dilute, asymmetric Hopfield model in section 3. Diluting 
and asymmetrising the Hopfield model modifies the phase diagram drastically: the 
state of no retrieval is no longer metastable relative to the retrieval phase, and the 
retrieval state has the widest possible basin of attraction right up to  its continuous 
transition to non-retrieval. This is in contrast to the existence of the narrow retrieval 
phase in the optimal model. We also found that the Hopfield model has a higher 
storage capacity at high temperature than the model trained t,o be optimal at T = 0. 
Although the reverse is true at  low temperature. This leads us to conclude that the 
Hopfield model is more ‘specialised’ to process noisy inputs, and to  operate in the 
presence of extensive ambient noise, whereas the optimal model is more ‘specialised’ 
in the opposite situations. 

We have also investigated whether it was possible to  improve the storage of the 
optimal model in the presence of fast noise, by increasing the stability at  the majority 
of nodes while allowing errors at  the remaining small fraction of nodes. We have found 
that using the Gardner-Derrida cost function for the errors [19] there is only a marginal 
improvement at  intermediate temperatures, but the storage is dramatically reduced 
at  low temperature; it is impossible to increase the storage of attractors beyond the 
Gardner a = 2 limit [lo]. 

Perhaps the comparison of these models demonstrates some principle of special- 
isation, namely different models perform better in specific environments, but not in 
others: the optimal model at  low temperature; learning with errors at  intermediate 
temperature; and the Hopfield model at high temperature. Furthermore, these spe- 
cialisations are characterised by their corresponding field distributions: at  low temper- 
ature the field distribution should be maximally stable; at intermediate temperature 
it may be better to  have a small tail at  the far negative extreme; at high temperature 
a broad single-band distribution may be more suitable. Thus, although our attempt 
to use optimal synaptic coding to improve retrieval storage capcit,y in the presence of 
fast noise has not succeeded, our study did shed some light on the form of possible 
solutions [23]. 
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Appendix. Expansions about the ‘tricritical’ point 

The function g will be parametrised by ,8 and another parameter K ,  which determines 
the loading level a and may even be cy itself. For example, in  Gardner’s optimal 
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network [la], K is the site stability parameter. Or, it may be related to  the number of 
errors allowed in the process of storage (see e.g. section 5 ) ,  etc. Ultimately we wish 
to  consider a phase diagram in the K-T or a-T plane. 

The condition for a fixed point reads: 

m = f ( ' ) ( ~ ,  ~ ) m  + f ( 3 ) ( ~ ,  ~ ) m ~  + f ( ' ) ( ~ ,  tc)m5. ('41) 

The line of continuous transitions, determined by (18) together with g"'(m = 0) < 0, 
gives P ,  or T ,  as a function of K .  As T is lowered below this line, a t  fixed K ,  one has 
the usual mean field result for the developing retrieval amplitude m: 

where the subscript indicates partial differentiation; the variable c implies that  the 
function is evaluated on the continuous line, i.e. at K and P,(K) and 

AP P - P,(.). 
At the tricritical point the line of continuous transitions, g'(0) = 0, which becomes 

the line of transitions from wide to  narrow retrieval, is expanded as 

A ~ , ( K )  = ~ A K  + ~ ( A K ) '  

A ~ , , ( K )  = alAn + c(AK)' 

(A31 

(A41 

and the line of discontinuous transitions to  no retrieval as 

where AK = K - tctr. On substituting the first expansion into (18) one finds: 

and (tr) indicates evaluation a t  the 'tricritical' point. The equation for the discontin- 
uous transition, near the 'tricritical' point, reads 

1 = f'"(P , K )  + 3 f ( 3 ) ( ~ ,  K)mz + s ~ ( ~ ) ( P ,  K E ) ~ ~ .  (A61 

(A71 

Combined with the condition for the fixed point, it gives the relation: 

( f (3) )2  = -4f(')( 1 - f")) 

which is an equation relating p and K along the discontinuous hansition line. After 
expanding this expression about the tricritical point a t  which f(3) = 0, fr) = 0, 
f(') = 1, and substituting A3 and A4, one finds 

0 = AK [4f(5)(tr)(fL')(tr) + alfj l)(tr))]  

[[fL3)(tr)l2 +4c(f(5)(tr)~j')(tr)+f(5)(tr)p[f!"(tr)+al~j"(tr)l)  

(A81 - 8bf(')(tr)fj1)(tr) + 4fi5)(tr)(fi ')(tr) + alf i ' ) ( t r ) ) ] .  
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This equation gives 

al = a (A9) 

With a and b given by A5 and A6. Hence the line of transition from retrieval t o  
no retrieval is continuous and has a continuous slope a t  the ‘tricritical’ point. The  
discontinuity is in the curvature. 
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